PRINCIPal
INVESTIGATOR

Mark T. Nelson, PhD
Chair and Distinguished Professor
My laboratory explores the control of endothelial and smooth muscle cell function by the cell membrane. A combined approach utilizing; single cell isolation, single channel recordings, intracellular calcium measurements, laser scanning confocal microscopy, diameter and membrane potential measurements in intact pressurized arteries, and protein expression – is used to examine the physiological properties of calcium and potassium channels. Activity at calcium and potassium channels allows active neurons in the brain to call for increased blood flow; sympathetic nerves to signal changes to blood pressure; and signaling in the control of urinary bladder function. Drug treatments for cardiovascular disorders, such as hypertension, angina and stroke target these areas. Of particular interest is cerebrovascular research of small vessel diseases (SVDs) in the brain. SVDs account for 30% of ischemic strokes and about 40% of cognitive decline and disability or dementia. Currently there are no specific treatments for SVDs or preventative therapies. By studying the mechanisms involved in both health and disease, we hope to develop therapeutic targets for both treatment and prevention.
RESEARCH FACULTY

Thomas Heppner, PhD
Assistant Professor
My research identifies fundamental processes that underlie the regulation of smooth muscle from urinary bladder and vascular tissues. This involves the study of ion channels and calcium signals from smooth muscle that affects membrane potential. I use a variety of techniques, including force measurements, calcium imaging, nerve recordings and electrophysiology.



David Hill-Eubanks, PhD
Assistant Professor
My primary research contribution is the molecular perspective and iconoclastic mindset I bring to the various projects of the Nelson laboratory. When I’m not poking the dominant paradigm with a stick, I contribute writing and editorial expertise to a range of laboratory products. In this capacity, I have acted as lead editor and co-writer of numerous successful NIH grants, international collaborative research grants, and post-doctoral fellowships. I also routinely edit papers submitted by the Nelson laboratory and assist Mark in reviewing papers and grant proposals.
Masayo Koide, PhD
Assistant Professor
Using experimental techniques from molecular level to whole animal (e.g. in vivo measurements of CBF and vivo astrocyte Ca2+ imaging), my goal is to understand the mechanisms of cerebral blood flow (CBF) regulation, specifically in the context of dysregulation of neurovascular communication in pathological conditions such as hypertension and hemorrhagic stroke.
Assistant Professor
Amreen Mughal, PhD
My overall research goal is to evaluate mechanisms involved in regulation of blood flow in the brain and how vascular endothelial and contractile (smooth muscle and pericytes) cells contribute in neurovascular coupling. I am also interested to explore mechanisms associated with impaired cerebral blood flow in Alzheimer’s disease. With the use of in vivo imaging approaches in awake and anesthetized mouse models with supportive ex vivo techniques and novel analysis approaches, my goal is to provide better understanding about neurovascular coupling mechanisms in health and Alzheimer’s disease.


Assistant Professor
Grant Hennig, PhD
My main interest involves developing ways to better describe and understand how intra/inter-cellular signaling molecules spread through biological networks to alter the behavior of various organs, such as blood vessels and the bladder. Multi-dimensional image analysis requires novel spatio-temporal approaches which I design and refine using the custom-written Volumentry platform.
Assistant Professor
Maria Sancho-Gonzalez, PhD
My primary goal is to better understand how blood flows within the dense vascular network supplying the brain. I am particularly interested in defining the still incompletely understood biophysical properties and ion channel signatures of the integral components of brain capillaries—endothelial cells and pericytes—which contribute to vascular function and cerebral blood flow control. My current research focuses on exploring the electro-metabolic sensing properties of capillary cells and their potential impact on cerebral hemodynamics in health and under conditions in which there is a mismatch between tissue blood/oxygen supply and demand.

Gerry Herrera, PhD
Assistant Professor
My primary interest is understanding factors that control smooth muscle excitability and contractility. I apply techniques from the single cell level up to the whole animal. Areas of focus include urogenital, gastrointestinal, and cardiovascular systems. I am also very interested in laboratory instrumentation development, and I direct R&D for my family businesses Med Associates, Catamount Research and Development, and Living Systems Instrumentation. As such, I am involved with developing instrumentation for behavioral neurosciences and many areas of physiology.
Postdoctoral Fellows/associates

Nicholas Klug, PhD
Postdoctoral Fellow
My overall research interest is to understand how endothelial and contractile cells in the smallest blood vessels of the brain and retina regulate blood flow. I am also interested in urinary bladder function, particularly the adenosine signaling pathways which regulate normal and disordered bladder function. I utilize single cell to whole animal techniques to understand cellular and molecular mechanisms which lead to normal and diseased blood vessel and urinary bladder function.
Maria Noterman, PhD
Postdoctoral Associate
My past PhD research investigated the cell-type specific roles of Cav1.2a1 in the brain using molecular and cellular biological techniques, specializing in metabolomics and mitochondrial physiology. I aspire to apply my background in cellular energetics to neurovascular coupling in the Nelson laboratory.
Graduate students

Clemens Probst
Neuroscience PhD Student
I am broadly interested in the neurovascular underpinnings of learning and memory, as well as how dysfunction of the neurovascular network contributes to the pathogenesis of neurodegenerative diseases and age-related cognitive decline.

Katy Walsh
Visiting PhD Student
My PhD at the University of Manchester (UK) focuses on how small artery dysfunction develops in Alzheimer’s Disease. I am visiting the Nelson Lab in order to learn techniques essential for my research, including novel calcium imaging analysis with Dr. Hennig and cranial window surgery for in-vivo vascular imaging with Dr. Mughal.
Laboratory staff
Theresa Wellman
Senior Technician
Daniel Enders, MS
Technician

As Lab Technicians, we are in charge of day-to-day management of the lab including orders of chemicals & equipment, and overseeing laboratory safety procedures. We maintain 25+ transgenic mouse lines, and are responsible for over 800 individual mice and one very important coffee maker. We assist researchers by developing mice varieties with genetic combinations they need with strict adherence to IACUC protocols.

The University of Vermont
Larner College of Medicine
Department of Pharmacology
89 Beaumont Avenue
Given Building B333
Burlington, Vermont 05405
2021