PRINCIPal
INVESTIGATOR
Mark T. Nelson, PhD
Chair and Distinguished Professor
My laboratory explores the control of endothelial and smooth muscle cell function by the cell membrane. A combined approach utilizing; single cell isolation, single channel recordings, intracellular calcium measurements, laser scanning confocal microscopy, diameter and membrane potential measurements in intact pressurized arteries, and protein expression – is used to examine the physiological properties of calcium and potassium channels. Activity at calcium and potassium channels allows active neurons in the brain to call for increased blood flow; sympathetic nerves to signal changes to blood pressure; and signaling in the control of urinary bladder function. Drug treatments for cardiovascular disorders, such as hypertension, angina and stroke target these areas. Of particular interest is cerebrovascular research of small vessel diseases (SVDs) in the brain. SVDs account for 30% of ischemic strokes and about 40% of cognitive decline and disability or dementia. Currently there are no specific treatments for SVDs or preventative therapies. By studying the mechanisms involved in both health and disease, we hope to develop therapeutic targets for both treatment and prevention.
RESEARCH FACULTY
Thomas Heppner, PhD
Assistant Professor
My research identifies fundamental processes that underlie the regulation of smooth muscle from urinary bladder and vascular tissues. This involves the study of ion channels and calcium signals from smooth muscle that affects membrane potential. I use a variety of techniques, including force measurements, calcium imaging, nerve recordings and electrophysiology.
David Hill-Eubanks, PhD
Assistant Professor
My primary research contribution is the molecular perspective and iconoclastic mindset I bring to the various projects of the Nelson laboratory. When I’m not poking the dominant paradigm with a stick, I contribute writing and editorial expertise to a range of laboratory products. In this capacity, I have acted as lead editor and co-writer of numerous successful NIH grants, international collaborative research grants, and post-doctoral fellowships. I also routinely edit papers submitted by the Nelson laboratory and assist Mark in reviewing papers and grant proposals.
Masayo Koide, PhD
Assistant Professor
Using experimental techniques from molecular level to whole animal (e.g. in vivo measurements of CBF and vivo astrocyte Ca2+ imaging), my goal is to understand the mechanisms of cerebral blood flow (CBF) regulation, specifically in the context of dysregulation of neurovascular communication in pathological conditions such as hypertension and hemorrhagic stroke.
Assistant Professor
Grant Hennig, PhD
My main interest involves developing ways to better describe and understand how intra/inter-cellular signaling molecules spread through biological networks to alter the behavior of various organs, such as blood vessels and the bladder. Multi-dimensional image analysis requires novel spatio-temporal approaches which I design and refine using the custom-written Volumentry platform.
Gerry Herrera, PhD
Assistant Professor
My primary interest is understanding factors that control smooth muscle excitability and contractility. I apply techniques from the single cell level up to the whole animal. Areas of focus include urogenital, gastrointestinal, and cardiovascular systems. I am also very interested in laboratory instrumentation development, and I direct R&D for my family businesses Med Associates, Catamount Research and Development, and Living Systems Instrumentation. As such, I am involved with developing instrumentation for behavioral neurosciences and many areas of physiology.
Adjunct & Visiting Assistant Professor
Maria Sancho-Gonzalez, PhD
My primary goal is to better understand how blood flows within the dense vascular network supplying the brain. I am particularly interested in defining the still incompletely understood biophysical properties and ion channel signatures of the integral components of brain capillaries—endothelial cells and pericytes—which contribute to vascular function and cerebral blood flow control. My current research focuses on exploring the electro-metabolic sensing properties of capillary cells and their potential impact on cerebral hemodynamics in health and under conditions in which there is a mismatch between tissue blood/oxygen supply and demand.
Postdoctoral Fellows/associates
Maria Noterman, PhD
Postdoctoral Associate
My past PhD research investigated the cell-type specific roles of Cav1.2a1 in the brain using molecular and cellular biological techniques, specializing in metabolomics and mitochondrial physiology. I aspire to apply my background in cellular energetics to neurovascular coupling in the Nelson laboratory.
Saúl Huerta de la Cruz, PhD
Postdoctoral Fellow
My overall interest is to understand the electrophysiological features and the functional interaction among the cells that comprise the neurovascular unit. From a single-cell approach involving patch-clamp electrophysiology to whole animal in vivo experimentation (two-photon imaging and cerebral blood flow measurements) my primary goal is to provide fundamental insights into the complex mechanisms underlying the neurovascular coupling (NVC). As a pharmacologist, I am also interested in identifying the molecular mechanisms driving neurovascular dysfunction in disease conditions.
Michael Yarboro, PhD
Postdoctoral Associate
My doctoral work focused on the postnatal hemodynamic changes required for effective transition from fetal to neonatal life. One such factor is the cessation of rhythmic spontaneous vasomotion in the ductus arteriosus in late gestation. In the Nelson lab, my goal is to further our understanding of the basic mechanisms and potential functions of cerebral arteriolar vasomotion on the hemodynamics of the brain.
Graduate students
Jason Rengo, MS
Cellular and Molecular Biology PhD Student
My career has focused on the clinical treatment of cardiovascular patients and research improving outcomes and delivery of care. These pursuits have inspired me to better understand the underlying mechanisms of systemic regulation and dysfunction related to cardiovascular systems, blood flow and smooth muscle. I'm particularly interested in how dysfunction of the neurovascular network contributes to alterations in cerebral blood flow and development of small vessel disease and cognitive decline.
Laboratory staff
Natalie Cashen
Nelson/Herrera Lab Technician
As Lab Technicians, we are in charge of day-to-day management of the lab including orders of chemicals & equipment, and overseeing laboratory safety procedures. We maintain 25+ transgenic mouse lines, and are responsible for over 800 individual mice and one very important coffee maker. We assist researchers by developing mice varieties with genetic combinations they need with strict adherence to IACUC protocols.
Hannah Fallon
Herrera Technician - Supported by Herrera/Heppner Funding
We are studying how the specialized urothelial cells that line the lumen of the urinary bladder modulate bladder function. Our approach is to use isolated strips of urinary bladder to examine how strips with the urothelium intact respond to various experimental perturbations as compared to bladder strips in which the urothelium has been physically removed. In this way, we can better understand how the urothelium contributes to regulation of urinary bladder contractility. Our findings will help us determine if the urothelium could serve as a therapeutic target in developing treatments of bladder dysfunctions such as overactive bladder and urinary incontinence.
Undergraduates
Nathan Stine
Koide Projects - Supported by Koide Funding
I work with Dr. Masayo Koide on the project examining the effects of elevated plasma aldosterone (termed hyperaldosteroemia) on cerebral blood flow and cognitive function in mice, as a possible risk factor for dementia. I am excited to apply the past few years of classroom lectures to real-world lab experiences utilizing cutting-edge scientific practices.
Elleanor Beaulieu
Herrera/Heppner Projects- Supported by Herrera/Heppner Funding
I am working with Dr. Herrera to investigate how the urinary bladder responds to changes in pressure and volume to develop a better understanding of how sensory information from the bladder is relayed to the central nervous system to indicate when the bladder is full. We are using an in vitro model consisting of the lower urinary tract, and we control for intraluminal pressure and volume.
We also are investigating the contributions of various genetically encoded cell types within the lower urinary tract to generate a better understanding of each cell type and the communication amongst the various cells that make up the wall of the bladder. We do this by using mouse models that are genetically encoded to express calcium indicators. By understanding the mechanisms that generate sensory information in the lower urinary tract, we will be better equipped to design and develop therapeutic strategies for treating voiding disorders.