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The Polyanionic Drug Suramin Neutralizes Histones and
Prevents Endotheliopathy

Nuria Villalba,*' Adrian M. Sackheim,* Michael A. Lawson,*> Laurel Haines,** Yen-Lin Chen,’
Swapnil K. Sonkusare,T Yong-Tao Ma,'“t Jianing Li,"t Devdoot Majumdar,§’11 Beth A. Bouchard,"’4
Jonathan E. Boyson,qI Matthew E. Poynter,# Mark T. Nelson, ** and Kalev Freeman®

Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions
such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding
limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic
effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable
electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells
(Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin
abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin
significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses
of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar
hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced
damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone

levels. The Journal of Immunology, 2023, 211: 648—657.

cute endotheliopathy is a clinical syndrome resulting from

extensive tissue injury in trauma and sepsis, including that

attributable to SARS-CoV-2 infection. Endotheliopathy is
characterized by widespread disruption of endothelial-dependent
vasodilatory function, barrier integrity, and hemostasis, which all
contribute to thromboinflammation, organ failure, and mortality
(1, 2). Extracellular histones are major mediators of endotheliopathy,
as shown by the efficacy of antihistone Abs in preventing systemic
inflammation and mortality in animal models of sepsis and endotoxe-
mia through LPS infusion (3, 4). Histones enter the circulation when
released by cellular apoptosis or necrosis (5-7), and in innate immu-
nity, when activation of neutrophils leads to the release of chromatin
in the form of neutrophil extracellular traps (NETs). These NETs
contain granular enzymes and peptides that aid in clearing bacteria,

as well as nuclear proteins, predominantly histones (3, 4). Nucleo-
somes induce cytokine production at low concentrations, but high
concentrations kill cells (8). Evidence of NET-induced endothelial
damage has been reported in COVID-19 (9), atherosclerosis (10, 11),
ischemia/reperfusion (12), and venous thrombosis (13, 14). Plasma
nucleases act on DNA/histone complexes circulating in the blood to
degrade the nucleic acids, exposing the highly cationic histones that
function as damage-associated molecular pattern proteins, activating
the immune system and causing additional toxicity (15—17). Free his-
tones are found at low levels (2—5 pg/ml) in the circulation in unin-
jured humans, but levels can reach 20-100 pg/ml in COVID-19
patients (18) and up to 250 pg/ml in the acute period following
severe trauma before they are degraded over hours and days by the
protease-activated protein C (19). At high concentrations, histones
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can activate platelets and damage vascular cells, particularly pul-
monary (19) and mesenteric endothelial cells (20), vascular smooth
muscle cells (11), and erythrocytes (21, 22), but histones are not
directly toxic to endothelial cells in the cerebral vasculature (23).
Histones activate and injure endothelial cells through mechanisms
including calcium overload (3, 20), pyroptosis through NLRP3 inflam-
masome and TLR activation (6, 24-27), and disassembly of adherens
junctions causing loss of barrier function (23, 28). Histones, similar to
other cations, can also bind directly to anionic membrane phospholi-
pids in stoichiometric ratios (29, 30), with high concentrations leading
to disruption of lipid bilayers (11, 31). Furthermore, histones deposited
on the lumen of blood vessels can also attract monocytes in a surface
charge—dependent fashion, causing atherosclerosis (4). Elevated
histone levels have been linked to widespread endothelial injury
and organ damage in human patients after trauma (19, 32-38) and
other conditions including ischemic stroke (39), sepsis (3), pancreatitis
(40), and acute respiratory distress syndrome (41, 42).

The critical unmet need for therapeutics that protect the vascular
endothelium from histone-mediated injury has become of immediate
relevance in the context of the SARS-CoV-2 pandemic (1, 9, 43). It
was recently demonstrated that the polyanionic agent defibrotide can
neutralize the pathological effects of extracellular histones (44). This
is important, because it suggests a strategy to protect blood vessels
from the products of NETosis. However, defibrotide is an expensive
drug that typically requires dosing every 6 h. Other synthetic poly-
anions can also block histone-induced toxicity (22), but these have
not yet been Food and Drug Administration approved for human
use. We hypothesized that suramin, a polyanionic drug that is also
safe, inexpensive, and widely available, would effectively prevent
histone-induced endotheliopathy. First synthesized by Bayer in 1917
as part of a drug discovery program for trypanosomiasis (African
sleeping sickness), suramin is a bis-polysulfonated naphthylurea
hexaanion with activity against trypanosomes in both animal
models and humans (45). Suramin has been used clinically for
>100 y and, importantly, is considered among the safest and most
effective drugs for health care by the World Health Organization.
Unlike heparan sulfate or heparin synthetic polyanions, which also
bind histones, suramin dosing is infrequent (usually once per week),
well tolerated, and does not cause complications associated with
anticoagulation.

The objective of this study was to test the hypothesis that suramin
can protect against histone-induced endothelial dysfunction. We found
that suramin binds individual histones in solution, but not citrullinated
histones released from NETs, which is consistent with the lack of
protection against citrullinated histone—induced cytotoxicity. Histones
activated cultured human endothelial cells to promote rapid thrombin
generation; we found that this reaction is abolished by suramin. In
pressurized murine vascular preparations, we directly tested the efficacy
of suramin for preventing histone-induced aberrant endothelial calcium
signaling and vasodilatory dysfunction. In a histone infusion model, we
measured the extent to which suramin prevented histone-induced lung
injury, endothelial cell activation, adhesion molecule expression, and
pulmonary barrier disruption. Importantly, we also found that suramin
completely protects against lethal doses of histones. Thus, histone bind-
ing is a novel mechanism of action for suramin, and these experiments
provide support for the use of suramin as a strategy to protect against
histone-induced endotheliopathy.

Materials and Methods
Animals
Male C57BL/6J mice (12 wk old; ~30 g) were purchased from The Jackson

Laboratory (Bar Harbor, ME). All animals were maintained on a 12-h light/
12-h dark cycle and standard diet and water ad libitum in an American
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Association of Laboratory Animal Care—accredited facility. All animal experi-
ments were approved by the University of Vermont’s Institutional Animal
Care and Use Committee (no. 2020-000-175), in accordance with the recom-
mendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health, and efforts were made to minimize suffering.

In vivo histone exposure

Mice were anesthetized with 2.5% isoflurane and administered purified histo-
nes (Roche distributed by SigmaMillipore, no. 10223565001) or sterile saline
(control group) as a single dose via retro-orbital sinus. Histones were diluted
in sterile saline to yield doses of either 45 or 75 mg/kg.

Suramin trial in vivo

We conducted a preclinical randomized trial to establish efficacy of suramin
in histone exposure. Based on the recommended initial dose of suramin
(1 g for adults and 10-15 mg/kg for children) (http://home.intekom.com/
pharmy/bayer/suramin.html), we used 20 mg/kg as the human reference dose.
We planned to compare » = 10 animals each in control (histone alone) and
suramin (20 mg/kg) groups based on sample size estimations for survival analy-
sis in a two-arm trial. For dose finding, we also included an additional arm
with a higher dose of suramin (2 = 6, 50 mg/kg). The fourth arm of the study
was a control group that did not receive histones or suramin to establish the
baseline (» = 6). Mice were randomly assigned to the four treatment groups.
Suramin (AdipoGen, no. AG-CR1-3575) was administered i.p. (20 or 50 mg/kg)
1h prior to histone infusion in the suramin groups. Animals were then anesthe-
tized to received either histones or controls. The primary outcome was the effect
of suramin on survival in the face of a lethal dose of histones (75 mg/kg; i.v.)
(1). Survival rates were determined every 5 min for 1 h.

Secondary outcomes of inflammatory biomarkers, that is, lung inflammation
(histology of lavage fluid and parenchyma), pulmonary endothelial cell activation,
and pulmonary vascular permeability, were studied to provide additional insight
into suramin’s mechanism of action in vivo. These outcomes were assessed in
additional experiments utilizing a survivable dose of histones (45 mg/kg;
i.v.) in mice, randomized to receive either no treatment (histones alone) or
suramin (50 mg/kg). Additional controls were included that did not receive
histones or suramin to establish the baseline for each outcome. All mice were
terminally anesthetized and euthanized 24 h after treatment.

To assess for markers of inflammation relevant to activated endothelium,
blood was collected via cardiac puncture in BD Microtainer blood collection
tubes (BD Biosciences). Sera was obtained by centrifugation (1300 X g, 10 min)
and frozen. Thawed sera were diluted 2-fold and cardiovascular markers were
measured using a Milliplex mouse cardiovascular disease magnetic bead panel
(MilliporeSigma, no. MCVDIMAG-77K). Data were acquired using the Bio-
Plex suspension array system and Bio-Plex Manager software.

To assess inflammation in the lung, bronchoalveolar lavage fluid (BALF)
was collected and analyzed for the total number of leukocytes and total protein.
Euthanized mice were tracheotomized with an 18G cannula and lavaged with
1 ml of Dulbecco’s PBS (Life Technologies, Carlsbad, CA). Lavage fluid was
centrifuged (1300 X g, 10 min) and cell-free supernatants were snap-frozen for
total protein analysis using the Pierce bicinchoninic acid protein assay kit
(Thermo Scientific, no. 23227). The pellet was resuspended with 400 pl of
PBS and total leukocyte count was measured via a hemocytometer (Neubauer
chamber).

Intact lungs were also assessed for histological changes. Lungs were inflation-
fixed at 20 cm H,O pressure with buffered formalin for 24 h, embedded in paraf-
fin, sectioned, and stained with H&E.

Pulmonary endothelial cell activation was studied in isolated cells by flow
cytometry. Mice were euthanized using sodium pentobarbital. Lungs were
inflated with an enzymatic digestion buffer (DMEM, 1 mg/ml collagenase
type IV [Invitrogen], and 0.2 mg/ml DNase I [Sigma-Aldrich]), after which
they were dissected away from the trachea and heart and incubated in 5 ml
of enzymatic digestion buffer in a 50-ml conical tube for 30 min at 37°C
under agitation at 200 rpm. After the 30-min incubation, 25 ml of PBS was
added, and the samples were vortexed for 30 s. The resulting cell suspension
was passed through a 70-wm filter and washed in PBS. RBCs were lysed
using Gey’s solution and washed in PBS/2% FCS, after which cells were
counted and resuspended for flow cytometry experiments.

For flow cytometry, nonspecific Ab binding was blocked by incubating
1 x 10° cells with Fc Block anti-CD16/32 (BD Biosciences, no. 553141).
After washing, cells were stained at 4°C in PBS/2% FCS containing 0.1%
sodium azide. Reagents and Abs used in these experiments were as follows:
Live/Dead (1:500; Invitrogen, no. L23105), CD45-FITC (1:400; eBioscience,
no. MCDA4501), CD11¢-PE-Cy7 (1:200; BD Biosciences, clone HL3, no.
561022), CD11b-eFluor 450 (1:800; eBioscience, clone M1/70, no. 48-0112-82),
Ly6G-Alexa Fluor 700 (1:500; BD Biosciences, clone 1AS8, no. 561236),
CD45-BB700 (1:6400; BD Biosciences, no. 566440), CD326-BV605 (1:500;
BD Biosciences, no. 740389), CD31-FITC (1:400; BD Biosciences, no. 558738),
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CD141-BV421 (1:800; BD Biosciences, no. 747647). Data were collected
on a BD LSR II flow cytometer (BD Biosciences) and analyzed using
FlowJo (Tree Star, Ashland, OR). Ab titration experiments were performed
to determine the Ab concentration resulting in the best separation of cell
populations and minimize nonspecific binding under the same experimental
conditions.

Pulmonary vascular barrier permeability to solutes was assessed by mea-
suring extravasation of FITC-labeled 70-kDa dextran. For these studies, mice
were reanesthetized 24 h after experimental treatment, and then given a retro-
orbital injection of 70-kDa FITC-dextran (100 pl of 3 mg/ml). After 30 min,
they were euthanized with transcardial perfusion with PBS to eliminate any
remaining FITC-dextran in circulation. Lungs were isolated and homogenized
in 1 ml of RIPA buffer and centrifuged at 12,000 X g for 20 min. The concen-
tration of 70-kDa FITC-dextran in the supernatant was detected via fluores-
cence measurement (excitation 490 nm, emission 520 nm) and interpolation
from a standard curve of known concentrations of FITC-dextran. Results are
presented as nanograms of FITC-dextran per milligram of protein in the
supernatant.

Ex vivo studies on intact murine arteries

Third-order branches of mesenteric arteries were isolated from wild-type
C57BL/6J mice. Surrounding tissue was removed and single mesenteric
arteries were mounted onto size-matched glass cannulae in an arteriograph
chamber (Living Systems Instrumentation, St. Albans, VT) as previously
described (20). The proximal pipette was attached to a servo-controlled, pres-
sure-regulating device (Living Systems Instrumentation). The mesenteric
arteries were then pressurized to 80 mm Hg in 37°C physiological saline
solution (120 mM NaCl, 4.7 mM KCl, 1.2 mM KH,PO,4, 1.2 mM MgCl,,
2.5 mM CaCl,, 7.5 mM glucose, 20 mM NaHCOs, pH 7.4) continuously
equilibrated with bioair of the following composition: 20% O, and 5% CO,
in 75% N,. Pressurized mesenteric arteries were visualized with an inverted
light microscope equipped with a charge-coupled device camera and edge-
detection software for continuous monitoring of internal mesenteric artery
diameter (IonOptix, Milton, MA). Mesenteric arteries were treated with
Ca*-free physiological saline solution at the conclusion of each experiment
to obtain maximal dilation diameter. Histones (1, 10, and 100 pg/ml) or
saline (control) were delivered through the cannula into the lumen of the
mesenteric arteries. Conditions of low shear stress were used to avoid stimu-
lating flow-mediated vasodilatory mechanisms (~2 pl/min flow, <5 dyne/
cm?). Endothelial cell function was determined by measuring the dilatory
response to activation of endothelial small conductance and intermediate
conductance Ca® " -activated potassium channels with 1 WM NS309.

Calcium imaging in pulmonary arteries ex vivo

Calcium imaging in the native endothelium of mouse pulmonary arteries was
performed as previously described (46). Briefly, fourth-order (~50 pwm) pulmo-
nary arteries were pinned down en face on a Sylgard block and loaded with
Fluo-4-AM (10 pM) in the presence of pluronic acid (0.04%) at 30°C for
30 min. Fluo-4 was excited at 488 nm with a solid-state laser and emitted
fluorescence was captured using a 525/36-nm band-pass filter. Images were
acquired at 30 frames per second with an Andor Revolution WD (with Borealis)
spinning-disk confocal imaging system (Oxford Instruments, Abingdon, U.K.)
comprised of an upright Nikon microscope with a 60X water dipping objective
(numerical aperture 1.0) and an electron multiplying charge-coupled device
camera (iXon 888, Oxford Instruments, Abingdon, UK.). Ca>" signals were
analyzed using the custom-designed SparkAn software (46, 47). A region of
interest defined by a 1.7-um? (5 x 5 pixels) box was placed at a point corre-
sponding to peak event amplitude to generate a fractional fluorescence (F/Fy)
trace. F/F, traces were filtered using a Gaussian filter and a cutoff corner fre-
quency of 4 Hz. The number of Ca®* events was autodetected using a detec-
tion threshold of 0.3 F/F, in SparkAn (custom software, Dr. Adrian Bonev,
Burlington, VT). Each data point indicates one field of view from one pulmo-
nary artery. Calf thymus histones containing H1, H2a, H3, and H4 histones
(unfractionated histones) were used for these experimental series.

Histone-mediated cytotoxicity assay in cultured cells

The cytotoxicity of calf-thymus histones and citrullinated histone H3 was
determined on mouse lung microvascular endothelial cells (Cell Biologics,
no. C57-6011) using propidium iodide (PI). Cells were treated with various
concentrations of histones or citrullinated histone H3 and then incubated with
PI (2 pg/ml) for 20 min at 37°C. Then, PI fluorescence was quantified using a
microplate reader and dead cells were visualized under a confocal microscope.

Calibrated automated thrombinography in cultured cells

Human endothelial cells (EA.hy926; ATCC CRL-2922) were incubated with
histones (50 pg/ml), suramin (50 pM), histones + suramin, or DMEM alone
for 4 h at 37°C, 5% CO,. Calf thymus histones containing H1, H2a, H3,

SURAMIN NEUTRALIZES HISTONES

and H4 histones (unfractionated histones) were used for these experimental
series. The cells were released from the tissue culture wells with trypsin and
subjected to centrifugation (170 X g, 7 min). Cell pellets were washed once
by resuspension in 20 mM HEPES, 0.15 M NaCl (pH 7.4) (HBS) followed
by centrifugation. The final cell pellets were resuspended in HBS and adjusted
to a final concentration of 1 X 10”/ml.

Thrombin generation was assessed using a modified calibrated automated
thrombogram. Plasma was thawed at 37°C in the presence of corn trypsin
inhibitor (0.1 mg/ml final concentration) and incubated with the thrombin
substrate Z-Gly-Gly-Arg 7-amido-4-methylcoumarin hydrochloride (0.42 mM)
(Bachem, Bubendorf, Switzerland) and CaCl, (15 mM) (3 min, 37°C). The
reactions were initiated by the addition of relipidated tissue factor (TF);_n4>
(6.5 pM) (a gift from Dr. R. Lunblad, Baxter Healthcare) and synthetic vesicles
consisting of 80% phosphatidylcholine and 20% phosphatidylserine (PCPS)
(20 uM), or EA.hy926 cells (2 x 10%). Fluorescence was measured (excitation
of 370 nm, emission of 460 nm) for 1 h with a Cytation 3 imaging reader (Bio-
Tek, Winooski, VT). Changes in fluorescence were converted to thrombin con-
centrations using a calibration curve created from sequential dilutions of human
thrombin. If no change in fluorescence was noted after 60 min, the lag time for
the sample was defined as >60 min.

Fluorescence spectroscopy

Fluorescence spectroscopy was used to determine the equilibrium Ky values
for the histone/suramin complex. Calf thymus histones containing H1, H2a, H3,
and H4 histones (unfractionated histones) or citrullinated histone H4 (Cayman
Chemical, no. 17926) were used for binding experiments. The changes in
intrinsic suramin fluorescence emission were measured with a microplate
reader (BioTek, Winooski, VT) at 25°C. The samples were excited at 315 nm
and the emission spectrum was measured between 370 and 480 nm. Histones
did not show spectral overlap in that range (Supplemental Fig. 1A). The
titration was performed stepwise with a suramin stock concentration (1 M)
in assay buffer containing 50 mM HEPES, 100 mM NaCl, and 2 mM CaCl,
(pH 7.4); fluorescence measurements were performed after each titration
with histones (0-8 wM). After normalization of the fluorescence emission
signal, the Ky for each suramin/histones complex was estimated by nonlinear
curve fitting with a sigmoidal dose—response function using GraphPad 7 soft-
ware (GraphPad Software, San Diego, CA). The percentage of bound
suramin/histones was plotted against the concentration of free histones.

Molecular modeling

Model preparation. All of the models were constructed using the Desmond/
Maestro program (v2016-3, Schrodinger) using the System Builder in Maestro.
Each model contained a complete histone octamer (PDB: 5XF3) with or with-
out DNA and six suramin molecules that were arbitrarily placed at a minimum
distance of 15 A from the proteins. The SPC (simple point-charge) water
model was employed to solvate the complexes, with counterions and 0.12 M
NaCl, 0.047 M KCl, 0.025 M CaCl,, and 0.012 M MgCl,. The construct
with a DNA-bound histone has a total of 197,122 atoms in a periodic box
of ~123 x 128 x 127 A3, whereas the one with a DNA-free histone has
180,860 atoms in a box of ~120 X 122 x 124 A3.

Simulation setup. All simulations were performed in the Desmond program
with the OPLS3 force field in the NPT ensemble (1.01325 bar, 310 K, Martyna—
Tobias—Klein coupling scheme) with a time step of 2 s (48, 49). The particle
mesh Ewald technique was used for the electrostatic calculations. The van
der Waals and short-range electrostatics were cut off at 9.0 A°. Hydrogen
atoms were constrained using the SHAKE algorithm. Each simulation had
two 700-ns replicas.

Visualization and analysis. PyMOL (v2.5, Schrodinger) and Visual Molecu-
lar Dynamics (VMD, http://www.ks.uiuc.edu/Research/vmd/) were used for the
structure visualization of the simulations; the simulation analysis panel was car-
ried out in Maestro.

Statistical analysis

Datasets were first tested for normal distribution using the Kolmogorov—
Smirnov method to determine the appropriate parametric or nonparametric
test with which to proceed. Data were analyzed by a two-tailed unpaired or
paired Student 7 test, Mann—Whitney U test, Wilcoxon rank text, one-way or
two-way ANOVA and Bonferroni post hoc test, or the Mantel-Cox test for
survival using GraphPad Prism 7.04 (GraphPad Software, La Jolla, CA). A
p value <0.05 was considered statistically significant.
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FIGURE 1. Suramin binds histones in solution. (A) Chem-
ical structure of suramin. (B) In vitro fluorescent spectroscopy
studies were used to biochemically establish the interaction
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between suramin and histones. We established the absorbance > 6000 g 1.07
and emission spectra for histones and suramin in solution 2 5000 Histones + Suramin 8308
(Supplemental Fig. 1A), and then measured suramin sodium c E 4000 _-;3 2os6 g 4 s
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(D) Molecular dynamics simulations showing interactions
between suramin molecules and the histone octamer in solu-

tion. Several exposed amino acid residues including arginine, D
asparagine, lysine, and threonine form hydrogen bonds with

the sulfate groups on suramin (Lys''®, Thr'®, Arg”!, Lys’”’,
The''S, Arg®, Asn'®, Arg?, Are®, Lys”!, Are®, Arg®®).
These include residues on H2A, H2B, H3, and H4, which are
predicted to form stable electrostatic interactions with the sul-

fate groups on suramin.
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Results

Suramin binds to individual histones in solution and decreases
histone-mediated cytotoxicity

Based on its molecular structure, we hypothesized that suramin, a
highly charged polysulfonated napthylurea, would bind avidly to cationic
histone complexes (Fig. 1A). When NETs or nucleosomes enter the
bloodstream, they are exposed to endogenous nucleases that rapidly
digest DNA, leaving free histone proteins (15). Therefore, we
focused on testing the interactions between suramin and histones.
First, fluorescence spectroscopy studies were used to biochemically
establish the Ky and number of high-affinity binding sites for inter-
actions between the two molecules. We established the absorbance
and emission spectra for histones and suramin in solution and then
measured suramin sodium salt—intrinsic fluorescence using an excess
of suramin in the presence of increasing concentrations of histones
(Fig. 1B, Supplemental Fig. 1). The resulting interactions are repre-
sented using a binding curve (Fig. 1C). Scatchard analysis of the
binding curve demonstrates a single high-affinity binding site with a
Ky of 250 nM (Fig. 1C). These results confirm that suramin readily
binds histones in solution. We then used all-atom molecular dynam-
ics simulations to determine likely interactions between suramin mol-
ecules and the histone octamer in solution (Fig. 1D, Supplemental
Video 1). Suramin quickly formed electrostatic contacts between its
SO,™ and arginines on the protein surface such as Arg>® and Arg®
of H3, Arg” and Arg® in H4, Arg"” in H2A, and Arg® in H2B.
Hydrogen bonding between suramin and several threonines was also
observed, such as Thr® of H3, Thr'® and Thr’® in H2A, and Thr''®
in H2B. These interactions remained stable toward the end of our
simulations and enabled steady binding for five of the suramin
molecules to histones. Additionally, we tested the interaction between
citrullinated H3 and suramin. Binding experiments by fluorescence spec-
troscopy revealed no changes of the citrullinated H3 fluorescence peak
in the presence of suramin, indicating a lack of binding (Supplemental
Fig. 2A). We next studied whether suramin affects cytotoxicity induced
by either individual histones or citrullinated H3 by PI staining. Suramin

significantly decreased cell death induced by 100 wg/ml histones,
whereas treatment with suramin did not protect against citrullinated
H3 (Supplemental Fig. 2B, 2C). These results further suggest that sur-
amin binds to individual histones preventing endothelial cell cytotoxic-
ity but does not bind as effectively to NET-derived histones.

Histones induce rapid thrombin generation on human endothelial
cells that is blocked by suramin

Thrombin is the ultimate protease in the clotting cascade, catalyzing
fibrin formation. The formation of thrombin following cleavage
of prothrombin is rate limiting to the coagulation process (50). Phos-
phatidylserine-dependent prothrombin activation on the endothelial
surface leads to the formation of microthrombi, shedding of extracel-
lular vesicles and glycocalyx, neutrophil migration, and efflux of
water into damaged interstitial tissues (10, 50). Extracellular vesicles,
enriched with histones, have procoagulant membranes and carry
microRNAs into the bloodstream (51). To test whether histones
promote thrombin generation, we used calibrated automated throm-
bograms in recalcified pooled healthy human plasma, in the absence
of exogenous TF and phospholipid membrane, to measure the ability
of cultured human endothelial cells (Ea.hy926) to support thrombin
production. Under these conditions, thrombin formation occurred
slowly (lag time >15 min), but when histones were applied, thrombin
generation was accelerated, with a lag time of <5 min (Fig. 2A, 2B).
Histone treatment also had prothrombotic effects on other measures
of thrombin generation including peak thrombin, endogenous throm-
bin potential, time to peak thrombin, and the rate of thrombin generation
(Fig. 2C-F). In the presence of suramin, measures of histone-induced
thrombin generation were significantly ameliorated to levels observed in
untreated cells.

Suramin prevents disruption of endothelial-dependent vasodilation
and endothelial cell calcium overload caused by histones

Endothelial-dependent vasodilation of small arteries in response to
NO and other hyperpolarizing stimuli is essential for the regulation
of regional blood flow to meet metabolic demands. Disruption of
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FIGURE 2. Histones drive rapid thrombin generation
on human endothelial cells that is blocked by suramin.
(A) Calibrated automated thrombogram tracings of thrombin
generation (nanomolars) versus time (minutes) by cultured
human endothelial cells (Ea.hy926) in recalcified, pooled,
healthy human plasma. Histones (50 pg/ml), suramin
(50 uM), or a combination of both were exogenously
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endothelial-dependent vasodilation is considered the hallmark of
endothelial dysfunction. We previously demonstrated that histones
induce aberrant endothelial cell calcium responses that disrupt
normal vasodilatory signals in small mesenteric arteries (20, 47). In
this study, we used video-edge detection to record the vasodilatory
responses of pressurized, resistance-sized arteries from the mouse
mesenteric circulation to the exposure of the endothelial-dependent
vasodilator NS309 (0.1-1 puM) before and after intraluminally per-
fusing histones (10 pg/ml) through the vessel in the presence and
absence of suramin (50 uM) (Fig. 3A, 3B). Vasodilation to 1 pM
NS309 after 30 min of histone exposure was reduced to 33% of the
prehistone control dilation. Vasodilatory function was completely
preserved during this same experiment while in the presence of
suramin (50 pM). Because lung injury is a significant concern in
conditions characterized by high levels of histones such as acute
respiratory distress syndrome (19), we also studied vascular prepara-
tions from small mouse pulmonary arteries. These blood vessels
were surgically opened on one side to expose the endothelial cell
layer for direct measurement of a fluorescent calcium indicator using
confocal microscopy (Fig. 3C, 3D). Similar to our prior findings in
human and mouse mesenteric arteries (20), we found that histones
(10 pg/ml) significantly increased the number of detectable calcium
events compared with baseline. The presence of suramin (50 pM)
during histone application significantly decreased the number of cal-
cium events; however, the activity was still elevated when compared
with the baseline control (Fig. 3D). Together, pretreatment with sur-
amin completely prevents histone-induced endothelial vasodilatory
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o
F
Z s
s 0
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dysfunction in pressurized arteries and significantly decreases aber-
rant calcium signaling caused by exposure to histones.

Suramin prevents adhesion molecule expression, neutrophil recruitment,
and pulmonary endothelial barrier disruption caused by histones

The results of our biochemical and in vitro work provided a ratio-
nale for an in vivo model of histone toxicity. Circulating histones
can injure platelets, erythrocytes, and vascular endothelial cells from
multiple tissue beds. However, in humans and animal models of
trauma, lung tissue is particularly vulnerable to circulating damage-
associated molecular pattern proteins (19). Therefore, we next tested
the hypothesis that suramin would prevent the increase in circulating
biomarkers, endothelial cell activation, and influx of inflammatory
cells into the lungs caused by histone infusion (45 mg/kg). To specif-
ically assess the endothelial effects of suramin after histone exposure,
we freshly isolated mouse pulmonary endothelial cells and measured
their adhesion molecules using flow cytometry. The extent of neutro-
phil migration into the lungs after histone exposure was also quanti-
fied. After 24 h, lung tissue was dissociated, and the frequency of
neutrophils was determined by expression of CD11b and Ly6G
by flow cytometry. Treatment with histones resulted in a statistically
significant increase in the frequency of neutrophils in the lung
(Supplemental Fig. 3A, 3B). Lung endothelial cell ICAM-1 expression
was also significantly increased by histones (Supplemental Fig. 3C, 3D).
Suramin ameliorated these histone-induced effects, causing a significant
reduction in the frequency of neutrophils and expression of endothe-
lial cell ICAM-1.

202 14y G| UO Jasn JUoWldA 4o Ausieaiun ‘Aleiqr [edips|y eueq Aq ypd-€020022!1/1L0ELy91/819//) L Z/pd-8jone/jounwwif/Bio 1ee sjeulnolj/:dpy wol pepeojumoq



The Journal of Immunology

FIGURE 3. Suramin prevents endo-
thelial dysfunction and calcium overload
caused by histones. (A) Representative
tracings of pressurized (80 mm Hg),
third-order, mouse mesenteric arteries.
Histones (10 pg/ml) or saline (control)
was flowed through the lumen at 2 pl/min
(<5 dyn/em?) for 30 min. Dilations to the
endothelial-dependent vasodilator NS309
(0.1, 0.3, and 1 uM) preflow and postflow
were recorded. In one subset of experi-
ments suramin (50 pM) was superfused
abluminally for 10 min prior to and then
continuously during histone flow. Maxi-
mal dilations were elicited at the end of
the experiments using Ca®*-free buffer (0
Ca*") physiological saline solution. (B)
Representative images from en face
mouse pulmonary arteries loaded with
Fluo4 (10 pM) on a spinning disk confo-
cal microscope. All images are from the
same field of view recorded over 2 min.
Arrows indicate large histone-induced cal-
cium event F/F, regions of interest. Scale
bar, 10 pm. (C) Paired summary data of
percent dilation to 1 pM NS309 preflow
and postflow of saline (Pre-Sal 99 + 1 ver-
sus Post-Sal 97 + 3%; n = 5; n.s.), histo-
nes (10 pg/ml) (Pre-His 97 + 2 versus
Post-His 33 £ 2%; n = 5; *p < 0.05, by
paired Student ¢ test), and suramin
(50 pM) with histones (Pre-Sur+His 99 +
1 versus Post-Sur+His 98 + 1%;
n = 5; ns.). (D) Summary data of the
paired total number of events per field
after saline (control; 19 + 5 events; n = 4),
histones (His; 10 pg/ml; 41 + 6 events;
n = 4), and suramin (50 uM) and histo-
nes (Sur+His; 27 = 6 events; n = 4)
application. Significant differences were
determined using a repeated measures
one-way ANOVA test with a Holm—Sidak
correction for multiple comparisons for all
three groups; *p < 0.05. Data are repre-
sented as mean + SEM. A new biological
replicate was used for each arteriography
and calcium imaging experiment.

Suramin prevents lung injury and improves survival after exposure

to histones

To assess clinically relevant outcomes, we next tested whether sura-
min would prevent death and lung injury in vivo after histone expo-
sure. We randomized mice to one of four experimental groups:
saline; saline and histones (75 mg/kg); suramin (20 mg/kg) and his-
tones; or suramin (50 mg/kg) and histones (Fig. 4A). Survival was
monitored and updated every minute for the 35-min duration of the
study. Groups were compared using a Mantel-Cox analysis and
Mantel-Haenszel for the hazard ratio. Of animals receiving 75 mg/kg
histones alone, 70% died abruptly within 10 min and showed symp-
toms such as bleeding from the nose, pink frothy sputum, and signs
of respiratory distress, and only 20% survived the 35-min period. In
contrast, 100% of animals receiving suramin at the higher dose of
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50 mg/kg with the lethal dose of histones survived when compared

with the histone group (1.959-35.09, 95% confidence interval [CI];

8.29 hazard ratio; p < 0.05). The lower dose of suramin (20 mg/kg)
also provided a modest survival benefit (36%) when compared with
the high dose (1.359-28.71, 95% CI; 6.25 hazard ratio; p < 0.05)
but not to the histone-only group (0.9702-9.410, 95% CI; 2.49 hazard
ratio; not significant). In a separate set of mice exposed to histone
infusion (45 mg/kg) in the presence or absence of the higher dose of
suramin (50 mg/kg), we found that suramin reversed intra-alveolar
hemorrhage visible on histology as well as elevation in cell counts and
protein measured in BALF (Fig. 4B, 4C). As an additional control,
we also examined lung sections from mice receiving suramin alone
(50 mg/kg). These were indistinguishable from mice treated with
saline (Supplemental Fig. 4A). Pulmonary barrier breakdown
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FIGURE 4. Suramin improves survival and prevents lung injury and edema caused by histones. (A) Saline (control; n = 6), a lethal dose of histones (His;
75 mg/kg; n = 10), and a lethal dose of histones with suramin (Sur+His; 20 mg/kg, n = 11 or 50 mg/kg, » = 6) were injected into mice and survival was
recorded during the course of 35 min. Suramin was injected i.p. *p < 0.05 for each group compared with saline (by a Mantel-Cox test) (B) Representative
images of H&E stain of a histological section of paraffin-embedded fixed lung tissue from a mouse from saline-, histone-, and suramin + histone—treated groups
(n = 3). The dark blue color denotes cell nuclei, light pink indicates the extracellular matrix, and red indicates erythrocytes. Scale bar, 200 pm. (C) Summary
data of the total, nondifferentiated cell counts in the bronchoalveolar lavage fluid (BALF) at 4 h after saline (control; 43,333 + 4,410 cells/ml; » = 3), histones
(His; 45 mg/kg; 167,847 + 22,008 cells/ml; n = 7), or suramin (50 mg/kg and histone injection (Sur+His; 41,667 + 5,725 cells/ml; n = 6) and 24 h after saline
(control; 48,000 + 3,742 cells/ml; n = 5), histones (His; 45 mg/kg; 120,000 + 12,649 cells/ml; n = 6), or suramin (50 mg/kg) and histone injection (Sur+His;
45,000 + 10,247 cells/ml; n = 6). Summary data for the total protein leakage into the BALF at 4 h after saline (control; 188 + 19 pg/ml; n = 5), histones (His;
45 mg/kg; 1215 + 186 pg/ml; n = 9), or suramin (50 mg/kg) and histone injection (Sur+His; 507 £ 66 pg/ml; n = 5) and 24 h after saline (control; 239 + 21 pg/ml;
n = 5), histones (His; 45 mg/kg; 901 + 249 pg/ml; n = 9), or suramin (50 mg/kg) and histone injection (Sur+His; 225 + 39 pg/ml; n = 7). Data are expressed as
mean + SEM. *p < 0.05, by two-way ANOVA with Bonferroni’s correction for multiple comparisons. A new biological replicate was used for each survival study
experimental group, H&E staining (n = 3 for each group), cell counts, and total protein in BALF measurements.

induced by histones, quantified as the extravasation of 70-kDa
FITC-labeled dextran, was significantly decreased by suramin. Sura-
min also blocked extravasation of the labeled dextran in renal tissue
caused by histones (Supplemental Fig. 4B).

Discussion

Histones, released from injured cells or in NETs extruded from acti-
vated neutrophils, can activate and damage vascular cells through
several mechanisms that are not fully understood. Histones can acti-
vate ion channels, observed by membrane potential and current
recordings in endothelial cells and other cells (19, 52, 53). With pro-
longed exposure (minutes to hours), or at high concentrations, histo-
nes, and histone H4 in particular, can also damage lipid bilayers in
any cell type, including endothelial cells, and act as cell-penetrating
proteins (11, 22, 31). Histones can also engage innate immune
responses leading to prothrombotic activation of endothelial cells
(27, 54, 55) or pyroptosis (6, 24-26). All of these mechanisms can
contribute to acute endotheliopathy. In the current study, we looked
at the interaction between extracellular histones and suramin and
demonstrated that not only does suramin form a stable complex
with histone proteins, but, also, this neutralizing effect completely
prevents histone-induced endothelial dysfunction and mortality.

Furthermore, we also explored the interaction between NET-derived
histones (i.e., citrullinated histones) and suramin. We found that cit-
rullination, an important posttranslational modification on histones
essential for the formation of NETSs, prevents the interaction between
citrullinated histones and suramin. The loss of charge on NET-derived
histones most likely decreases the binding force between citrullinated
histones and suramin, and therefore suramin’s chelating (protecting)
effect. Suramin has been used for >100 y as an antiparasite and anti-
cancer agent, and, importantly, is considered among the safest and
most effective drugs for health care by the World Health Organiza-
tion. This discovery of a new mechanism of action for a widely avail-
able and easily administered drug, as a blocker of deleterious histone
effects, provides a tantalizing target for the potential clinical therapeu-
tic use of suramin in acute immunovascular and thromboinflammatory
conditions.

Our results provide new insight into the pathophysiological out-
comes of histone-induced organ injury. We provide (to our knowledge)
the first demonstration that in native, pulmonary artery preparations,
histones elicit calcium-mediated events similar to those we previ-
ously observed in mesenteric resistance arteries from humans and
mice. We also found that histone infusion caused endothelial barrier
breakdown of small blood vessels in both kidney and lung, with
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increased extravasation of the 70-kDa dextran, but not in brain.
This is consistent with other evidence that pulmonary and renal (6,
17, 19) tissue beds are highly sensitive to histone-induced injury. It
was recently shown that histones increased paracellular permeabil-
ity in the hippocampus but not cortical brain regions (23). It is pos-
sible that we missed these regional cerebrovascular effects because
we quantified vascular leak for the entire brain and not specific
regions, or because we used a 70-kDa tracer rather than a smaller
sized dextran that would more specifically target blood—brain barrier
permeability. In the current study, our focus was on lung injury,
with results in freshly harvested lung cells, isolated vascular prepara-
tions, and in vivo models uniformly supporting the model in which
histones activate endothelial cells to increase cellular adhesion mole-
cule expression, in conjunction with increased release of circulating
adhesion molecules. These changes in the pulmonary vascular endo-
thelium result in increased neutrophil recruitment to the lungs.

Importantly, we also demonstrate a new, endothelial-dependent
mechanism by which histones increase thrombosis. Prior studies
have shown that histones can increase plasma thrombin generation
in purified systems by reducing thrombomodulin-dependent protein C
activation (56). In this study, we provide new evidence (to our knowledge)
that histones can rapidly activate endothelial cells directly to promote
thrombin generation. We show that on endothelial cells, in the absence
of added TF or phospholipids, thrombin formation occurs slowly, but
when histones are applied, thrombin generation is accelerated, with a
lag time of <5 min. This reaction was blocked by suramin. The time
course of this reaction, occurring minutes after histone exposure,
was unexpected, since known procoagulant responses of endothelial
cells to histones, such as release of von Willebrand factor (54), upregu-
lation of TF (27), or downregulation of thrombomodulin mRNA and
surface Ags (55), which occur 1-8 h after exposure. Thus, rapid phos-
phatidylserine translocation, possibly due to TMEM16f activation (57,
58), coupled with mobilization of “cryptic” TF in the endothelial cell
membrane, likely drives the rapid reactions we observe. Understanding
the effectors of rapid procoagulant responses to histones may improve
targeted therapies to protect against excessive thrombosis in inflamma-
tory conditions.

Suramin offers several advantages over other therapeutic strate-
gies to prevent histone-medicated vascular injury. Polyanions such
as heparin can neutralize histones and prevent histone-mediated
cytotoxicity (42, 59-61). Heparin improves outcomes in some patients
with sepsis (59) or COVID-19 (62, 63), but the mechanisms are not
fully understood. Furthermore, heparin cannot be safely used in all
patients, such as those requiring surgical procedures, because of the
risk of hemorrhagic bleeding. Unlike heparin, which requires contin-
uous infusion, suramin dosing for acute inflammatory conditions is
infrequent (once per week), and extensive experience with this drug
has shown that it has an excellent safety profile. Anticoagulant effects
have been demonstrated in trials of continuous infusions of suramin
after 14 d, but single injections of suramin do not impact blood clot-
ting (64). It is also readily available worldwide, at a low cost. Other
naturally occurring substances, such as pentraxin 3 (65), activated pro-
tein C (35), C1 esterase inhibitor (66), and inter—a inhibitor proteins
(39), as well as anti-histone Abs (3, 4, 42) and synthetic polyanions
(22, 44), can also neutralize excessive histones to prevent toxicity, but
these drugs are either not approved or not available for human use.
Albumin or fresh-frozen plasma may have benefits in trauma and sep-
sis, in part due to histone binding (67), but blood products are limited
resources with high costs compared with suramin.

Taken together, these results provide evidence supporting the use
of suramin in trauma and sepsis. This is particularly important in the
context of the unprecedented global public health crisis caused by
the novel SARS-CoV-2 virus, because histone levels are elevated
in individuals with COVID-19 (18, 68), and endotheliopathy and
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thromboinflammation secondary to NETs drive progression from
systemic inflammation to organ failure and death (1, 2). Of note,
suramin may have other mechanisms of therapeutic action in viral
illness. Polyanion inhibitors have been used to block viruses that
require cell surface sugars such as heparan sulfate to infect humans,
which include HIV, Ebola, Zika, and SARS-CoV-2. These inhibitors
include naturally occurring therapeutic polyanions such as heparin,
synthetic polyanions, such as suramin, or modified cyclodextrins
(69). Heparin is the subject of over a dozen registered clinical trials
for SARS-CoV-2 (https://clinicaltrials.gov) and has efficacy in
COVID-19 (63). Most of these trials are testing injectable unfractio-
nated heparin or low—molecular mass heparin at prophylactic or ther-
apeutic anticoagulant doses. Other trials are using intranasal or
nebulized heparin in an attempt to block viral entry, because heparin
can serve as a decoy for the target cell heparan sulfate needed for
optimal interaction between viral spike protein and ACE2. Heparin is
also believed to have immunomodulatory and endothelial protective
effects, based on evidence of prior benefit in sepsis from other
causes, and histone binding may be an important therapeutic mecha-
nism of action for heparin (59, 70). Suramin is a competitive inhibi-
tor of heparin, and it has been suggested, but not established, that
suramin shares a mechanism of action against SARS-CoV-2 by act-
ing as a decoy for heparan sulfate that can block spike protein and
ACE2 interactions (71). Suramin also inhibits the main protease
needed for SARS-CoV-2 infection (72), and it is the subject of at
least one COVID-19 clinical trial at the time of this submission
(https://clinicaltrials.gov).

Although our data demonstrate that direct interaction and neutrali-
zation of histone proteins is a mechanism of action for suramin, we
did not rule out the possibility that the drug has other mechanisms
that might contribute to endothelial protection. For example, previ-
ous studies have demonstrated mechanisms of action for suramin,
including known effects on many enzymes and receptors. Published
studies show that suramin exhibits activity blocking downstream G
protein—mediated signaling of various G protein—coupled receptor
proteins, including A1 adenosine receptor, D2 receptor, P2 receptor,
rhodopsin, and ryanodine receptors (73—76). Suramin was also
reported to inhibit human sirtuins (SIRT1/T) (77). Additionally, at
high concentrations, suramin has cell-independent effects on blood
coagulation and clot formation (64). Whether these mechanisms are
involved in endothelial cell protection and improved survival in
mice and/or improved acute lung injury caused by histones was not
studied here. Because our study was focused on histone-induced
microvascular damage and the protective effect of suramin in this
context, we did not include mice receiving suramin alone in all
experiments. Although this is a limitation to our work, the literature
already contains several studies examining the effects of suramin alone.
For example, an experimental group receiving suramin alone at a simi-
lar dose (60 mg/kg) was included in a previous study that examined
effects of suramin on the lung in the context of bleomycin-induced
lung injury (78). The mice receiving suramin had no difference in
survival from those receiving saline. Furthermore, suramin alone
had no impact on total and differential cell count in BALF. This
contrasts with the effects of toxic doses of suramin (250—500 mg/kg),
which produces abnormal enlargement of lungs and evidence of lung
pathology such as the lysosomal storage disorder mucopolysac-
charidosis (79, 80). Of note, the combination of histone and sura-
min produced an ICAM-1 response that appears even lower than
with histones alone (Supplemental Fig. 3D). This suggested that
the protective effects of suramin in the context of histone exposure
may be explained not only by binding histones in solution, but
also through other mechanisms of action. In support of this, prior
work has shown that suramin alone can decrease immunogenicity of
renal endothelial cells by reduction in their expression of ICAM-1
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(81). In another study, suramin suppressed cell membrane permeabil-
ity in cultured kidney cells via inhibitory actions on connexin 43
hemichannels (82). Thus, other known mechanisms of action that are
independent of histone exposure, including decreases in ICAM-1
expression and suppression of membrane permeability, may also
contribute to the salutary benefits of suramin that we observed.

In summary, we demonstrate a new and previously unreported (to
our knowledge) mechanism of action for suramin. Suramin blocks
cytotoxic effects of histones and prevents histone-induced vasodila-
tory dysfunction, endothelial cell activation, thrombin generation,
lung injury, and mortality in mice. Our results provide a mechanistic
basis and rationale for clinical trials of suramin as a repurposed treat-
ment that can be rapidly deployed to prevent endothelial injury and
excessive blood clotting in conditions associated with high circulat-
ing histone levels such as trauma and sepsis.
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